Digital ASIC Fabrication IRP Presentation

sddec24-12

Mitchell Driscoll, Evan Dunn, Baoshan Liang, Katie Wolf

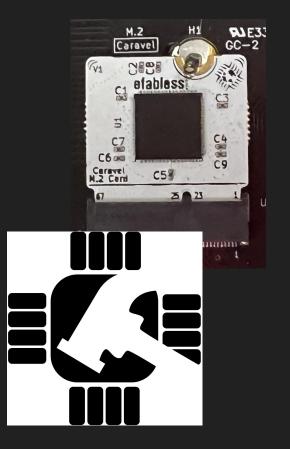
Client & Faculty Advisor Dr. Henry Duwe

sddec24-12.sd.ece.iastate.edu

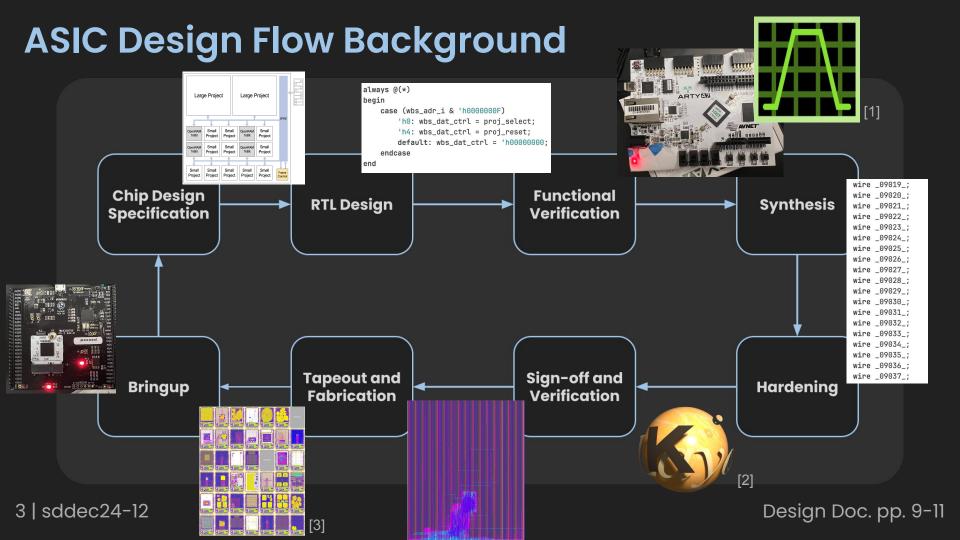
1 | sddec24-12

Project Overview

Context


• Undergraduate students rarely design, fabricate, and bring-up custom ASICs

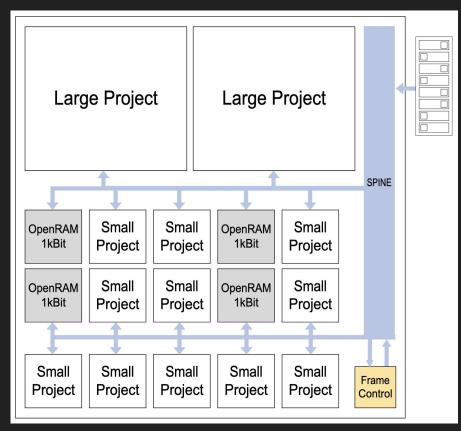
Goal


• Support co-curricular at ISU for students interested in chip fabrication

Purpose

- Chip framework for student projects
- Amortize cost of fabrication

2 | sddec24-12

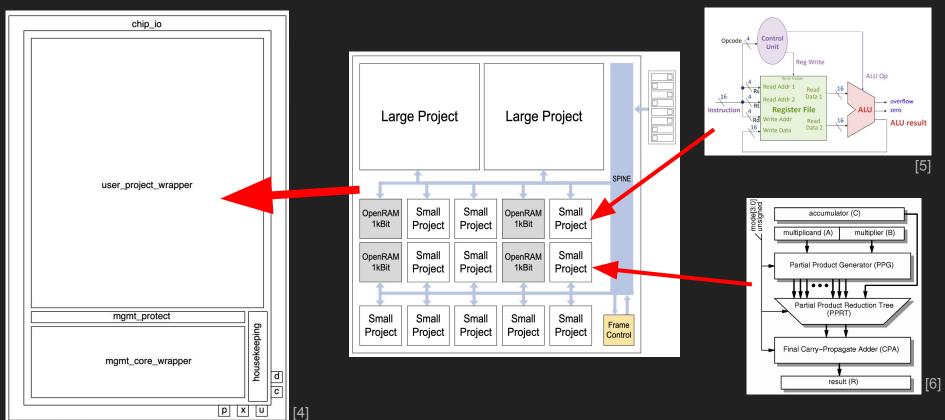

Users

4 | sddec24-12

Functional Requirements

- Supports up to 15 total projects
- Software on microcontroller selects which project is active
- One project is active at a time
- Projects interface with Wishbone bus, LA pins, and IO pins
- Design successfully passes precheck and tapeout

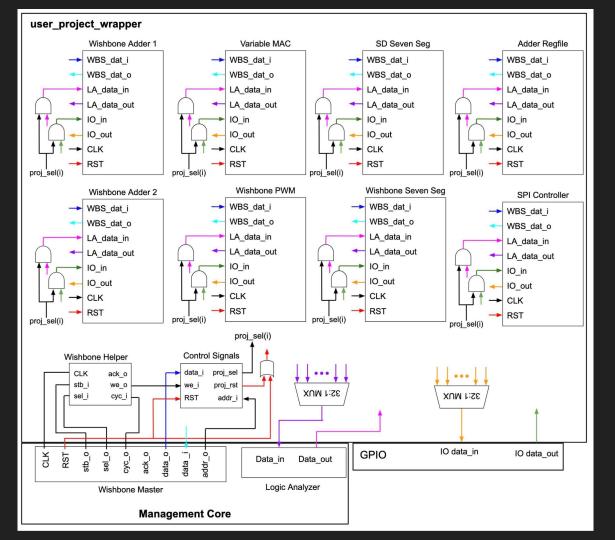
Non-Functional Requirements


Technical Requirements

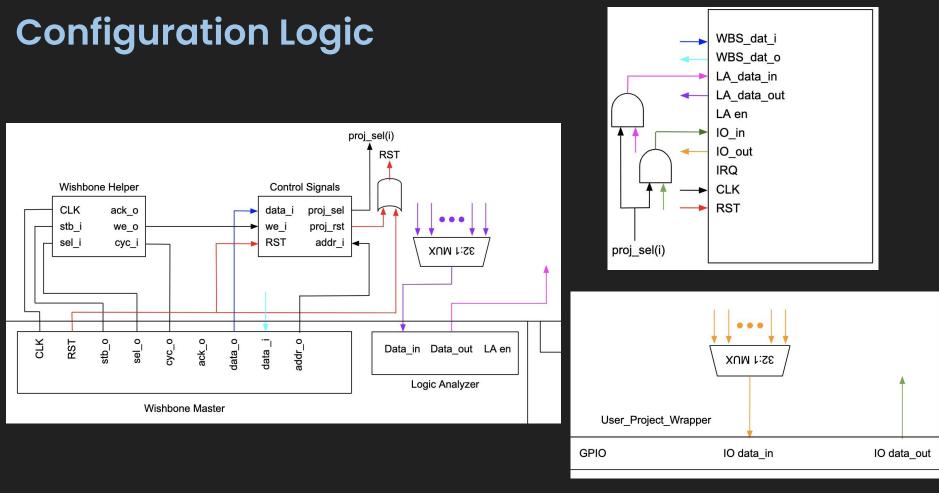
- Use Efabless process
- Design implemented in Verilog
- Test code written in Verilog and C
- Frequency of 20 MHz

User-Based Requirements

- Full documentation and bring-up plan
- Straightforward to use with minimal help or troubleshooting
- System is modular and users can expand upon it


High-Level Design

7 | sddec24-12


Design Doc. pp. 17-18

Design Schematic

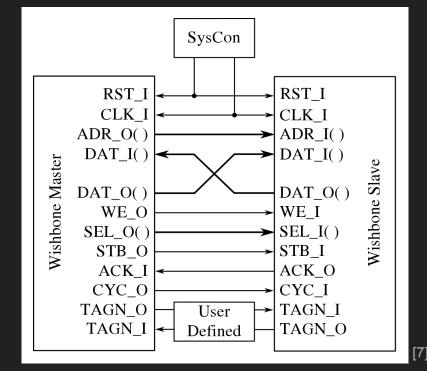
8 | sddec24-12

Design Doc. pp. 19-20

Design Doc. pp. 18-20

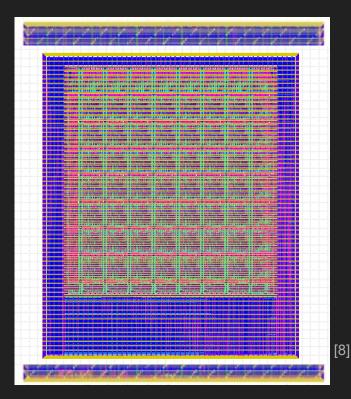
Interfaces

Wishbone Bus


 Interface between microcontroller and user projects

• Logic Analyzer Probes

 Signals driven or monitored by microcontroller


Input/Output Ports

 Programmable pins to send or receive data externally

Top-Level Integration

- Method 1 Macro-First Hardening
 - All macros are hardened and placed in wrapper
- Method 2 Full-Wrapper Flattening
 - All user logic placed directly in wrapper
- Method 3 Top-Level Integration
 - Hardened macros and additional logic placed in wrapper

11 | sddec24-12

Hardening Method

- Method 3 Top-Level Integration
 - Minimum student project die area = 501 x 501 μ m
 - \circ 10mm² / .25mm² = ~40 possible projects
- Method 2 Full-Wrapper Flattening

• No minimum project die area

Component	Run #	Changed Settings	# Ports	CLOCK_PERIOD	CLOCK_PORT	CLOCK_NET	FP_SIZING	DIE_AREA	PL_TARGET_DENSITY	Pass? (Y/N)
adder_wrap	1	-	607	25 (40 MHz)	wb_clk_i	[blank]	absolute	0 0 700 700	0.55	Y
adder_wrap	2	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 350 350	0.55	N
adder_wrap	3	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 525 525	0.55	Y
adder_wrap	4	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 438 438	0.55	N
adder_wrap	5	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 482 482	0.55	N
adder_wrap	6	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 500 500	0.55	N
adder_wrap	7	DIE_AREA	607	25	wb_clk_i	[blank]	absolute	0 0 501 501	0.55	Y

12 | sddec24-12

Design Doc. pp. 21-22

Risk Mitigation

Risk	Mitigation				
External SRAM Integration	Remove OpenRAM and add DFF RAM if time permitting.				
Cannot complete design before tapeout deadline	Schedule meetings with Efabless group to get assistance with errors/issues in the design.				
Projects and spine do not fit into user space	Decrease the required number of projects to be implemented into our design.				
Post fabrication errors	Complete testing of our design before tapeout submission including Verilog and C++ test code.				

13 | sddec24-12

Testing Plan

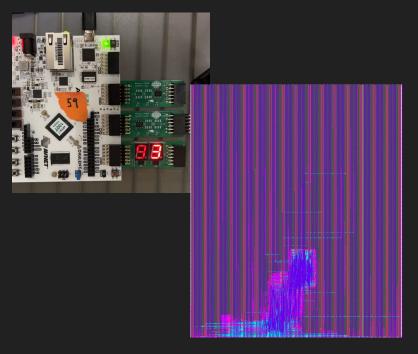
- Unit Testing Simulations for individual projects
- Integration Testing Simulations for entire framework
 - Project selection, switching, reset
 - Maintaining individual project functionality
- Acceptance Testing Hardening and Precheck
 - Optimal hardening configuration
 - Timing issues/concerns
- Bringup Testing Future testing plan

14 | sddec24-12

Design Doc. pp. 22-24

Testing Steps

- Simulations & Emulations
 - RTL, GL
 - C code, FPGA


• Hardening

- Place and route
- Static Timing Analysis (STA)

• Precheck

- Required for Efabless submission
- Layout Versus Schematic (LVS)
- Design Rule Check (DRC)
- Bringup
 - Re-use C code

Design Doc. pp. 22-24

Testing Results

Step	Status			
Project Simulations	Pass (RTL, GL, FPGA)			
Project Hardening	Pass			
Framework Simulations	Pass (RTL, GL, FPGA)			
Framework Hardening	Pass with Timing Warnings			
Framework Precheck	Pass			
Tapeout	Pass			

16 | sddec24-12

Design Doc. pp. 24-25

Static Timing Analysis Results

- Max hold, slew, capacitance violations
 - Non-critical timing paths LA pins to/from IO pins
- Chip-level STA runs
 - Clock frequency 40 MHz, 10 MHz
 - Max slew and capacitance margins
- Opportunity for debug analysis
 - Explore timing issues
 - Variation between chips

17 | sddec24-12

Future Impact

- Chip is currently being fabricated
- ISU ASIC Expansion
 - Bringup experience
 - More resources for Chip Forge
- New Programs
 - Potential undergraduate course incorporation
- Industry connections
 - Internship and full-time opportunities

References

- [1] https://fr.wikipedia.org/wiki/GTKWave
- [2] https://github.com/klayout
- [3] https://efabless.com/open_shuttle_program
- [4] https://caravel-harness.readthedocs.io/en/latest/
- [5] https://cs.wellesley.edu/~cs240/s24/lab/lab05/notebook.html
- [6] https://www.researchgate.net/figure/Block-Diagram-of-a-MAC-Unit_fig4_342692405
- [7] https://en.wikipedia.org/wiki/Wishbone_(computer_bus)
- [8] https://info.efabless.com/knowledge-base/top-level-integration-and-power-management

Thank you! Questions?