Digital ASIC Fabrication

DEsiGN DOCUMENT

sddec24-12
Client & Faculty Advisor: Dr. Henry Duwe

Mitchell Driscoll
Evan Dunn

Baoshan Liang
Katie Wolf

sddec24-12@iastate.edu
sddec24-12.sd.ece.iastate.edu

Revised: December 12, 2024
Version 2.1

Executive Summary

Development Standards & Practices Used

IEEE 1481-2019 - IEEE Standard for Integrated Circuit (IC) Open Library Architecture
IEEE 1364-2005 - IEEE Standard for Verilog Hardware Description Language

ISO/IEC 9899:2018 — Information technology — Programming languages — C
WISHBONE System-on-Chip (SOC) Interconnection Architecture for Portable IP Cores

Summary of Requirements

Our chip framework will:

Support 15-20 projects created by students

Allow one project to be active at a time through the configuration of the management core
Provide interconnections between user projects and chip resources

Follow the Efabless chip guidelines and project architecture

Pass RTL simulation, hardening, GL simulation, and MPW pre-check

Be used by the ISU Chip Fabrication Co-curricular Team

Applicable Courses from Iowa State University Curriculum

CPR E 281 - Digital Logic

CPR E 288 - Embedded Systems I

CPR E 381 - Computer Organization and Assembly Level Programming
CPR E 488 - Embedded Systems Design

E E 330 - Integrated Electronics

E E 465 - Digital VLSI Design

New Skills & Knowledge Acquired Not Taught in Courses

ASIC chip design and development

Chip fabrication and tape-out process

Open-source project architecture - Efabless, Caravel

Open-source tools - OpenROAD, OpenLANE, KLayout, GTKWave

Electronic design concepts - synthesis, layout, routing, static timing analysis, clock gating

Table of Contents

1 INETOAUCHION. .. eeeeieiieeeeeeeeeeeeeeeeeeeee e et eeeeeeeeeeessssssssssssssssssseeeeeeeeeeeesseessesesssssasssssssssssnsssnnnnnnnne 7
1.1 PTODIEIM SEAtEIMENT....c.uiiuiiitieiiciiestieieceete et et et e ste et esteeseeteesbeessesseessesssesseessesseassasseessesssesseassessanns 7

1.2 INEENAEA USETS......oovieeiiiiieie ettt ettt ettt ettt et ete et e e te e teeta e teeabesteeaseessebeesseeseesseessenseessenns 7

2 Requirements, Constraints, and Standards.........cccccevveerrieriiriiiiinnnienniccninnieennecsneneeessecssnnnes 8
2.1 Requirements & CONSETAIMNES.co.tiitirierieeieeiteieet ettt sttt et ettt e b et e saeeneeaeens 8

2.2 ENgineering Standards...........cocoeireirienieiniei ettt sttt 9

3 Project Plam......cccciiiiiiiiiiiiiiiiiiiiiiiiiiiininirccccccctenn s s st s s s s s s s s s s s s s s s s 9
3.1 Project Management/Tracking Procedures............ccoeevieerieenieinenieinieinceneeeeecseenieeeeeeene 9

3.2 Task DECOMPOSIEIONL.c.iieuiieeiieiieteieteetet ettt sttt ettt be sttt ettt se st et es 9

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria..........coceeeeververinenenencnenennene 10

3.4 Project Timeline/SChedule...........ccooiiiiiiiiiiiiicceeeeeee e 1

3.5 Risks and Risk Management/MitiGation.........cccueerieerieirienirienieeeriesesieeeeseeeeseereseene e seseeeessenes 12

3.6 Personnel Effort ReEQUITEMENLS.ccoeiririiiiiiieecieeeeee e 12

3.7 Other Resource ReQUITEIMENLS..........coueuirieuiiieirieieicrteieeiee ettt ettt st 13

4 DeSIBIcciiiiiiiiiiiiiiiiiiiiiii e e e e e e e s e s s s e s s s s s aes 13
4-1 DESIGN COMEEXL....euiuiiuiiiiiieiieiieeetetet ettt sttt st s a e st ettt et a e s e e et e e ennennennens 13
4-1.1 BTOQAET COMEEXL...uiivieiiitiiiisiesieitestestetest et et et e et e st et et e e e e e e e e esseseeseeseeseeseeseesessessessessensenes 13

4.1.2 Market RESEATCH.......ccuiiieiieieciieectee ettt ettt et e sse e s e e e e ssaessessaensensnans 14

4-1.3 Technical COMPIEXITY......eoveieieieieieieieieteeetet ettt ettt st b e bbb e bessensensesan 14

4.2 DESIGN EXPLOTALION. .. .cviiiitiieiiieiceteiete ettt ettt ettt ettt b bbb et te e beeenes 15
4.2.1 DeSIGN D@CISIONS.eeuiiiiiiiiieieeeeteet ettt sttt sttt 15

4.2.2 TAEATIOMN.....eeiiiiciiitecece ettt ettt ettt et e et e et e e asebeetbeets e s e beesbeetseteessenseeasenes 16

4.2.3 Decision-Making and Trade-Off............ccooireiriinineieeeeeee s 16

43 FINAL D@SIGN... ettt ettt ettt b ettt ettt e bt st e st e st e ebeebeebeste st e ntetetens 17
431 OVETVIBW...cuuiiiiiiteieete et ettt ettt e st e e eat et e e b e e bt et e sat et e eat e bt eaeesh e e s e eseenbeeatesseenseeaeenseenean 17

4.3.2 Detailed Design and VISUAL(S).......ccceeeririeieirinieeeiisieeiisieesesieseeesae e sesesesesesesesessesens 18

4-3.3 FUNCHONAIEY ..cveitiieieiieicee ettt ettt e s e e nean 20

4.3.4 Areas of Concern and DeveloPment..........cc.ccuvueriririeinieinienreniee e 20

4.4 Technology CONSIAEIationsS.........ccveirieirieieieieerie ittt ettt st esse e teneesessenesseneas 20

4.5 DESIGN ANQALYSIS...c.eitiuiriiiitiieiiricire ettt ettt eaen 21
=1 0N 22
5.1 UL T@SEINE. c. ettt ettt ettt et ettt et e s bt e besae et e et enne s 23

5.2 INEEITACE TOSTIMEG.eeetirieiirieiietetet ettt ettt ettt sttt be e 23

5.3 INteGration TESTINME......cecuiiiiiiriieiietee ettt sttt et st sr e b e eae s 23

5.4 SYSEEIMI TESEIMIG. c...envieitiiteie ettt s bttt b e et sh ettt e bt et e s bt et e sasenbeeatenaeen 24

5.5 ReGIession TeSTINEG.......cccuiiiiiiiiiiiiiiiieee et sttt 24

5.6 ACCEPLANCE TOSEINE. .. .euiiiiiiiitietiet ettt ettt sttt ettt sa et et sb e st sae e sesaeeae s e nneen 24

5.7 Bring-Up & Physical TESHING........cevveiriiiniiiriirieiirieircrctet ettt ettt 24

5.8 RESULES. .ttt ettt et ettt et ettt e st e st et e e st e st e st e s e eseeseesees e e s e eseese s e eseeseeseesenseesenn 24

6 IMPlemMentation. ..cccovvueiiriiiiiierierrieciitteereeesistteesseessnnteesssesssssseesssessssnseessssssssnsssssssssssnssasssss 25

6.1 DESIGN ANALYSIS.....ecuieieiieiiieiieieeee ettt ettt ettt sttt et se st ne st eneeaeneas 25

7 Professional Responsibility........cccccvviuieiiiiiiiiiiiiiiniiiiieiiiniiieeceee e 27
7.1 Areas Of ReSPONSIDILILY.....cccouiriiuirieiieiieee ettt 27

7.2 Project Specific Professional Responsibility Areas.........c.ccccevvecereririeieenieinieiseiseseeeseeeseenens 28

7.3 Most Applicable Professional Responsibility Area..........cccoeeveriiriirenenenierienieniesieee e 28

8 COMCIUSIONS. ..uuetiiiiiiiineiiiiiietee ittt e se e e e s s s asse e e s s s s asseeessssssnssaessssssssssaanes 29
8.1 SUMIMATY Of PIOZTESS......ccuiietiieiieieiieteietisteieste sttt se e sessesessesessessesanseseseneesenessensesensenes 29

8.3 ValUe ProvIded........cveuieiieiieiieiieieiceeet ettt ettt b bbb b bbb e beaenaan 29

B INEXE STOPS...ueiutiiuiitieteeit ettt ettt ettt st eb et b e et sat bt et e bt et b et e bt eteeaeen 30

O REF@I@NCES....cciiiiiiiiiiiiiiiiiiieeerrrr ettt ee e s s s s e s s s e s e s e e s asasssssssssanns 31
10 APPEIIAICES....uuueeeiiiiiiiiiiiiiiietet ittt ar e e br e e s ab e e s s s aaba e e s s s s s raa e e e s 32
10.1 Appendix 1 - Framework USer GUIAE..........covueirueirierieieieiriecrie et 32
10.1.1 Adding a Project to the Framework..........cccccoueoniininiiiinenniincnccecencenceeeenee 32

10.1.2 Testing Projects Within the Framework............cccccoveviiiniiiniininiiceeeeeee 34

10.1.3 Hardening the FramewWorK...........cccecivrireiriieieisieeeeeee et 34

10.1.4 Submitting to Efabless......c.cocoririiineiniiiiiieccn et 37

10.2 Appendix 2 - INitial DESIGN....c.coueiriiiriiieiirieierie ettt sttt 38
10.2.1 REQUITEIMIEIIES. ...ttt ettt sttt et s et sae et e e e b s 38

10.2.2 Detailed Design and VISUAI(S)......ccceueueuiririeieininieieinieiei st 38

10.2.3 SIMulation WavefOTImIS.cviiiuieiiieiieiicceeeteeteete ettt sttt sa s ss s e s e ae s nnens 40

10.3 Appendix 3 - Testing RESUILS.......couiriiiiiieieeeeeee e 41
10.4 APPENAIX 4 = TEAIMN.c..euitiieiiieiiitet ettt ettt b ettt ettt b et ettt be e e bt e s nee 42
10.4.1 TEAM MEIMDETS.cuiiiiiiieiceieietetetee ettt ettt aeese s eseeseeseeseeseeseeseeseeseeseeseesens 42

10.4.2 Skill Sets Covered by the Team..........ccecueiriririririiieeeceeeeeeee e 42

10.4.3 Project Management Style Adopted by the team.........ccccoeveinieineineniecceceeen 42

10.4.4 Initial Project Management ROIES...........cccocirieirieieinieire e 42

10.4.5 TEAIM COMETACE. ...ttt ettt ettt ettt ettt ettt b ettt e st et eb et et e b et aeebenen 42

List of Acronyms

ASIC - Application-Specific Integrated Circuit
DRC - Design Rule Checking

GPIO - General-Purpose Input/Output

IC - Integrated Circuit

[EEE - Institute of Electrical and Electronics Engineers
IO - Input/Output

IRQ - Interrupt Request Signal

LA - Logic Analyzer

LVS - Layout Versus Schematic

MPW - Multi-Project Wafer

NSPE - National Society of Professional Engineers
PDK - Product Development Kit

RTL - Register Transfer Level

SoC - System-on-a-chip

WB - Wishbone Bus

Terms and Definitions

Caravel Harness - Provided chip wrapper around our design, containing the User Area
and Management Core

Efabless - Open-source fabrication company that will manufacture our design
GTKwave - Open-source waveform viewer for viewing simulation results from VCD files
KLayout - Open-source tool for viewing and editing mask layouts

Management Core - Part of the Caravel Harness that contains the management utilities,
including the SoC and logic analyzer probes

OpenROAD - Collection of open-source tools based on OpenLANE, configured and
provided by Efabless to generate production files from Verilog descriptions

SkyWater 130nm - Fabrication process used by Efabless supported by the SkyWater
Foundry

User Area - Region inside the Caravel Harness users are allowed to modify

Verilog - Hardware design language specified by IEEE Std 1364-2005

Wishbone Bus - Peripheral bus used by the Management Core to communicate with
peripherals in the User Area

List of Figures

Figure 1: Project TImMEliNe.ooiiiviiiieeeeeee ettt s 1
Figure 2: Caravel Chip ATChiteCtUTE........ccueiriiiitiieiiicrcctee ettt 17
Figure 3: Framework DIQGIam.........ceiueirueririinieiinieceieetetete ettt ettt sttt et s e es 18
Figure 4: Design SCREMATIC.ccuiieieieieieieieee ettt ettt be b b aen 19
Figure 5: Hardening Data........c.coeereieirieinieireeeteie ettt ettt ettt eb ettt ettt sbe e 21
Figure 6: Final Hardened DeSIG........couvueiriririiiiiniiiciiieicttnetce sttt ettt 27
Figure 7: Initial Design SChemMatiC.......ccccviririririiriiriieieieeese ettt aenees 39
Figure 8: 32-10-1 DECOMET......coueiiiiiiiiieiiie ettt ettt ettt enes 40
Figure 9: N-Bit REGISTET.....cccueiuiiiiiiiiieieeertee ettt et sttt 40
Figure 10: Wishbone Control Module...........ccociriiiiiiiniiincicceceneeseeieee ettt 4
Figure 11: Adder Projects in FramewoTrK.........cccoeireiriiiinieieeeeeeese ettt 41
Figure 12: Seven Segment Display in Framework...........cccceieiiiiiinininieeeeeeeeee s 42

List of Tables

Table 1: EffOrt REQUITEIMENES.c.ccuiieiirieiirieieeeieeieieetet ettt ettt se e se e sesesse s esessesessenessensesensenen 13
B0 (e o Vo) Yot) 0L ' SRR 14
Table 3: Areas of ReSPONSIDILILY......c.coueoiiieriiirieiirieete et 28
Table 4: Project-Specific ReSPONSIDIIILY.......ccvvvirieirieiieieieieeieeeereese et 28

1 Introduction

1.1 PROBLEM STATEMENT

Undergraduate students rarely get the opportunity to create a custom digital ASIC (Application
Specific Integrated Circuit) and gain experience with chip fabrication. Chip Forge, a co-curricular
team at lowa State, provides interested students with that opportunity. However, it is infeasible to
provide each group of students with their own chip due to cost and space limitations. Our project
aims to build and silicon-prove a single-chip framework that will support a continuous cycle of chip
designs, or “tape outs,” ready for fabrication. The framework we design will provide space for
multiple small projects and the ability to run each independently. The project modules will be
created by the Chip Forge co-curricular team of students, ranging from freshmen to seniors. By
breaking the design process into smaller, less complex subprojects, students can complete modules
within a semester. Furthermore, our framework will allow multiple student projects to be fabricated
on a single chip, amortizing the cost of fabrication and making it financially feasible to expand Chip
Forge.

1.2 INTENDED USERS

The Iowa State University Chip Fabrication Co-Curricular Team members will be our project's main
users. This team will consist of undergraduate students, graduate students, and Electrical and
Computer Engineering professors. Additionally, the open-source community will have access to our
design through Efabless.

Future Students

Undergraduate students in the Chip Fabrication team, ranging from freshmen to seniors, will work
on their own ASIC projects to gain chip design experience outside their classes. To make the design
process more accessible and hands-on, they will need a functional, easy-to-use framework to
interface with the built environment and produce their final designs, which are then printed to
silicon. The fabricated chip projects can then be leveraged to qualify for extracurricular projects,
internships, and career opportunities.

Professors and Educators

The professors on the Chip Fabrication team will specialize in ASIC fabrication and lead all the
team members. They will need to provide hands-on experience for the ISU Chip Fabrication
Co-curricular team because they want to help undergraduate students gain chip fabrication
experience outside of class. They help direct the efforts of students in that they know the pitfalls
and can keep a clear goal in mind. The key is a mix of hands-on guidance while letting the teams
conduct their affairs.

Efabless Open-Source Community

Our project will be submitted to a public, open-source Efabless repository. Our project will be
available to Efabless community members to reference in their own designs. The Efabless
community will be interested in open-source ASIC development, and members will be looking for
project resources, reference, and collaboration.

2 Requirements, Constraints, and Standards

2.1 REQUIREMENTS & CONSTRAINTS

Functional Requirements

Our project client has outlined the following functional requirements our project must fulfill:

Framework holds up to 15 projects

Management wrapper controls which project is active

One project is active at a time

Chip resources will be multiplexed between all the projects
Projects will interface with the Wishbone bus, LA pins, and IO pins
Design successfully passes Efabless precheck

Technical Requirements

To meet the expected functionality, our design implementation must meet the following
requirements:

Development follows the Efabless process
Design is implemented in Verilog

Test code is written in Verilog and C
Final design generates a GDSz file

Design achieves frequency of at least 20 MHz
User-Based Requirements

To ensure proper user interaction and bring-up, our project must meet the following requirements:

e The project is fully documented on the ISU Chip Fabrication website
e Detailed descriptions of the project explain the framework architecture
e The framework is straightforward to use with minimal help or troubleshooting

Design Constraints

In addition to the requirements listed above, our project must comply with the Efabless project
constraints:

The project must use the required directory structure specified in the Caravel documentation
Hardened project wrapper must have an area of 2.920mm x 3.520mm

The top module must be named “user_project_wrapper”

Pin placement and pin sizes must match the golden user_project_wrapper in the Caravel
repository

2.2 ENGINEERING STANDARDS

e IEEE 1481-2019 - IEEE Standard for Integrated Circuit (IC) Open Library Architecture
o We are creating an ASIC that should meet timing and power constraints.

e IEEE 1364-2005 - IEEE Standard for Verilog Hardware Description Language
o All of our modules, as well as the project wrapper, will be implemented in Verilog.

e ISO/IEC 9899:2018 - Information technology — Programming languages — C
o Qur test programs for the management core will be written in C.

e WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores
o The Wishbone Bus is an open-source hardware bus used for communication between
different parts of an integrated circuit. Our design will use this bus to interface between the
management core and user projects.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team will use a combination of agile and waterfall methodologies for project management. This
allows for structured planning with clear expectations and milestones while offering flexibility.
Since our project has set goals that are required before we can move on to later steps, as well as a
hard deadline goal, using waterfall allows us to clearly outline a timeline to follow. We will utilize
agile to adapt to unforeseen complexity or challenges as issues arise. We will meet weekly, where we
can adapt our team’s focus if needed.

We will track our progress through communication on Microsoft Teams and shared files on Google
Drive. We will also utilize GitLab for version control of our code base and specific issue-tracking.

3.2 TAsk DECOMPOSITION

Our project is split up into the following tasks, which will generally be completed in sequential
order:

1. Tool Setup
a. Install and set-up open-source software and example Caravel project
b. Run RTL simulations, harden, and run GL simulations on the example Caravel
project
c. Successfully create, simulate, and harden custom components using the tool flow
2. Design Decomposition

a. Determine how user projects interact with Management SoC, Wishbone bus,
OpenRAM

b. Define interconnections between components and necessary control paths

c. Harden example user projects with different configurations to understand
constraints

d. Draw out a high-level framework schematic with all subcomponents, ports, and
connections

3. Create Modules
a. Implement each module in Verilog
b. Create a testbench that thoroughly covers the module’s functionality
c. Successfully simulate and harden each component on its own
4. Integrate Modules
a. Review modules and test benches written by each team member
b. Place modules in the high-level project wrapper based on the design
decomposition
c. Configure and harden the project wrapper with all components added
5. Test Overall Design
a. Place different user projects in the framework and test that each project can
function
b. Create and run tests that ensure the framework can properly connect and activate
projects
c. Create and run tests that ensure the framework meets timing, size, and power
constraints
d. Run project through pre-check and ensure all tests pass to prepare for fabrication
6. Submit Design to Efabless
a. Create a repository and project on Efabless’s website
b. Submit our design to the Efabless Open MPW program by the intended deadline
Bring-Up Documentation & Physical Testing

>

a. Thoroughly document our project’s design, implementation, testing, and general
use

b. Create a detailed bring-up plan for the ISU Chip Fabrication team

c. Run pre-fabrication physical tests on the ISU Chip Fabrication FPGA board

3.3 PrOJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Our project’s milestones can be broken into the main task sections listed above. Each milestone will
be measured using the following metrics:

e Milestone 1: Complete Tool Setup
o Each member can go through the RTL simulation, hardening, and GL simulation
process on the example project.
o Each member will be able to view correctly simulated waveforms in GTKWave.
o Each member can successfully implement a new Verilog module and complete the
same steps.
e Milestone 2: Complete Design Decomposition
o Framework will fully connect each user project to the Wishbone, LA, and 10 ports
o Hardening configuration results will outline the necessary size and layout of user
projects
o The framework schematic will illustrate the full interconnections between the user
projects and management wrapper
e Milestone 3: Create All Modules
o Each implemented Verilog module will properly synthesize and function as
expected

10

o Each module’s testbench will include base cases and edge cases for the design

under test

o Each module will pass simulation and can be hardened on its own

e Milestone 4: Integrate All Modules
o All modules will fit into the user project wrapper in synthesis
o Each project will be fully connected to the Management SoC
o The project wrapper successfully synthesizes and hardens after all components are

added

e Milestone 5: Test Overall Design
o The project’s resources will be multiplexed to the active project as selected in the
software

o The project will meet all timing, size, and power constraints set by Caravel for the
fabrication

o The project will successfully harden and pass all pre-check steps

e Milestone 6: Submit Design to Efabless

o The project will be placed in a public repository on Efabless

o The project will be fully submitted by the Efabless Fall 2024 deadline

e Milestone 7: Complete Bring-Up Documentation & Physical Testing
o Project documentation will be easy to understand and navigate without
troubleshooting

o The bring-up plan will cover future testing and use cases for the ISU Chip

Fabrication team

o The physical chip will fully support different user projects

3.4 PROJECT TIMELINE/SCHEDULE

Jan

Feb March | April May

Aug

Sept

Oct

Nov

Dec

Task Status
Project Setup Done
Setup tools and workspace Done
Example project tutorials Done
Design Decomposition Done
Research components Done
Draw schematic Done
Create Modules In Progress
Implement modules In Progress
Test and harden each module In Progress

Integrate Modules
Add modules to project wrapper
Implement interconnections

Test Overall Design
Test interconnections
Test user projects

Submit Design to Efabless

Bring-Up and Physical Testing
Test on firmware
Create bring-up plan

Figure 1: Project Timeline

The Gantt chart illustrates our projected timeline for this project, from start to finish. The timeline
takes place over the Spring 2024 and Fall 2024 semesters and is broken down into individual weeks.

n

Each major milestone is highlighted in a different color, and the milestone’s expected deliverable

deadline is at the end of the highlighted timeframe

3.5 Risks AND Risk MANAGEMENT/MITIGATION

We have identified the following major risks and appropriate mitigations of our project:

e Risk 1: Design does not pass pre-check
o Estimated Probability: 15%

o Mitigation: Use simulation tools to extensively check our design against the

fabrication specifications. Run DRC and LVS checks to ensure our layout meets all

rules and matches the expected schematic. Hold design reviews with our advisor

and mentors who may catch potential issues early.

e Risk 2: OpenRAM modules cannot be hardened or fabricated in the framework

o Estimated Probability 50%

o Mitigation: Exclude OpenRAM modules from the framework design or leave space
for OpenRAM modules to be added in the future. Until implemented, the user
projects cannot utilize OpenRAM modules. If time allows, implement DFF RAM as

an alternative.

e Risk 3: Project wrapper area cannot fit framework and expected projects

o Estimated Probability: 10%

o Mitigation: Reduce the number of user projects the framework will support. The
framework logic itself will likely not be able to be reduced due to wire spacing

requirements.
e Risk 4: Error occurs during fabrication process or delivery
o Estimated Probability: 5%

o Mitigation: Include testing features in our design to test the fabrication process
and ensure consistency in the physical chip. Plan for future redesigns or tweaks if

the initial fabrication process fails.

3.6 PERSONNEL EFFORT REQUIREMENTS

edge cases

Task Projected Hours

Tool Setup - installing tools, running example project 20
Design Decomposition - researching components, drawing schematic 20

Create Modules - writing Verilog, simulating and hardening individual 60
components

Integrate Modules - integrating modules in top-level design, 40
hardening wrapper

Test Overall Design - writing and running tests covering base and 8o

12

Submit Design to Efabless - creating a public project repository, 10
submitting the design

Bring-Up Documentation - documenting a detailed bring-up plan for 8o
future users

Physical Testing - receiving physical chip, running user projects in the 40
framework

Table 1: Effort Requirements

3.7 OTHER RESOURCE REQUIREMENTS

Our design will be manufactured through the Efabless Chiplgnite program. Fabricating a single
chip through this program costs $9750, and the fabrication turnaround is about 4-5 months.
Our project also requires the following open-source resources and software:

e SkyWater 13onm Open-Source Process Design Kit (PDK)
o GTKWave
e KLlayout

These tools are all free to use.

4 Design
4.1 DESIGN CONTEXT

4.1.1 Broader Context

Our project addresses the lack of ASIC development opportunities for undergraduate students. By
creating our framework, we can provide a cost-effective solution to allow multiple student projects
to be fabricated simultaneously. This ultimately supports a continuous cycle of chip prototypes,
created by students at any experience-level.

Area

Description

Examples

Public health,
safety, and welfare

Our project provides practical
experience and skills development for
students, which is essential for
building a knowledgeable workforce
capable of addressing future public
health and safety challenges through
innovative technologies.

Students can gain experience in
chip fabrication and create designs
with any functionality. They can
gain experience and supplement
their education with a low barrier
to entry.

Global, cultural,
and social

By enabling students to design and
fabricate chips, our project
contributes to the accessibility of
technology development, by lowering

The project could lead to initiatives
that focus on creating affordable

and accessible technology solutions
for underrepresented communities

3

barriers for chip design and
fabrication.

or developing regions, fostering
greater social and digital inclusion.

projects to be fabricated at once,
minimizing the cost of prototyping
multiple designs. It also contributes
to students’ learning and
development of valuable skills, which
will be beneficial in the workforce.

Environmental Our project involves the design of a By creating reusable components,
framework that allows multiple the project can contribute to
projects to run independently but reducing waste from excessive
share the same resources. This fabrication, promoting an efficient
approach can lead to more efficient cycle of chip fabrication.
use of materials and energy,
highlighting the importance of
sustainable practices in engineering.

Economic Our project allows multiple student The use of open-source work allows

users to create their own ASIC
designs at minimal cost.

Table 2: Project Context

4.1.2 Market Research

After investigating existing solutions for entry-level ASIC fabrication, we found that the company
Tiny Tapeout is the other main competitor to Efabless. However, we found several factors about
Tiny Tapeout’s fabrication program that make their solution unsuitable for our project.

Tiny Tapeout’s chip space is 16oum x 10oum, which allows for 1000 digital logic gates. This user

space is extensively smaller than Efabless’s, and it would not provide enough space to include the

desired number of projects and interfaces that our framework will implement. Due to its limited

size and interfaces, the Tiny Tapeout chip also has limited testing capabilities compared to Efabless.

For these reasons, our design will use the Efabless process.

Additionally, we will be building upon the work of prior senior design teams who have developed
various ASIC projects. We have access to their designs and the documentation detailing their
development process. However, our project is unique because it is implementing a framework that

can support multiple projects like the ones created by the senior design teams.

Prior Senior Design Teams:
e http://sdmay23-28.sd.ece.iastate.edu
e http://sddec23-08.sd.ece.iastate.edu
e https://sddec23-06.sd.ece.iastate.edu

4.1.3 Technical Complexity

Our design has multiple components and interfaces that contribute to its complexity:

e Wishbone Interface

14

We need to implement the Wishbone bus interface between the Management SoC
and the user projects. This communication protocol allows data to be transmitted
between the management and user area, and it will be used to send various control
values to configure the framework. We must implement a way to read and store the
control values through the Wishbone interface while also allowing the user
projects to use the interface to access the Management SoC memory.

e External OpenRAM

(e]

In addition to the memory provided by the Management SoC, we planned to
include additional independent memory modules in our design. This allows
projects to use external memory. We must incorporate the pre-hardened, 8-bit
OpenRAM modules into our design to allow projects to read and write 32-bit data.
To do this, we must create a Wishbone interface between the OpenRAM modules
and the user projects.

e Support of Different User Projects

(0]

1.
(e]

2.
(¢]

3.

(¢]

Multiple user projects need to be able to interface with the Management SoC
utilities and other chip resources. Only a single active project can send and receive
data at a time. The inactive projects should be able to hold their state. The projects
have independent reset signals. We are also looking into allowing the user projects
to have varying frequencies, which would involve clock gating.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

There were several design decisions that we had to make when planning out our framework design.
Beyond the basic functionality requirements, our client allowed us to decide on the following:

How many projects that our framework will support

The total number of user projects will affect how resources are multiplexed. It also
limits how big each user project can be, as we have limited space within the design
area.

How different user projects will be activated

Our design should only allow one project to be “active” at a time. The active project
will be reading and writing output data and utilizing memory. We must figure out
how to enable and disable all the projects independently within the framework.

How projects will interface with the management core

Each project should be connected to all the chip’s resources and, when active, be
able to read and write data from the management core. We must design an
interface that allows all the projects to communicate independently with the
management core.

4. How to incorporate OpenRAM with the user projects

(0]

OpenRAM is a memory module that is independent of the memory in the
management core. It provides external memory to the user projects. We must
decide how to connect existing OpenRAM modules to the user projects and how
many of the OpenRAM modules to include in the overall design.

15

4.2.2 Ideation

We based our design decisions on example projects and suggestions from our client:

1. We decided to implement 15 small projects and 2 large projects. These numbers were based
on the size of completed, for example, user projects. This choice may change if we run into
sizing constraint issues.

2. The active user project will be selected through the management core. A select value will be
written to a dedicated address in memory through software. Another option was to use
physical dip switches, but we implemented project control in software for simplicity.

3. We decided to multiplex all the chip’s resources to the different projects based on the select
value mentioned before. This method is widely used in digital design. Our interconnection
design is explained in more detail in the following sections.

4. We decided to include four 8-bit OpenRAM modules in our design. This way, 32-bit data
can be written and read across the four modules. However, incorporating OpenRAM in our
design requires additional ports to be added to each user project. This results in a bigger
project size. For this reason, we thought of several possible solutions to minimize the size
increase:

o Add the necessary set of OpenRAM ports to every project
o Utilize existing IO pins for OpenRAM interfacing
o Chain the OpenRAM modules in a sequential fashion, instead of in parallel

o Interface with the OpenRAM modules through the Wishbone protocol

4.2.3 Decision-Making and Trade-Off

To decide which method to use for OpenRAM integration, we considered the following trade-offs:

e Add the necessary set of OpenRAM ports to every project

o Pros: Simplest option; does not require additional logic besides multiplexing

o Cons: Results in a lot of additional ports per project; since we have 4 separate
OpenRAM modules, each project will need an additional (4 * # OpenRAM ports)

e Utilize existing IO pins for OpenRAM interfacing

o Pros: Does not require any additional ports to be added

o Cons: Limits a project’s use of IO ports; requires control module to identify which
and when IO ports will be used for memory

e Chain the OpenRAM modules in a sequential fashion, instead of in parallel

o Pros: Reduces number of additional ports to just (1 * # OpenRAM ports)

o Cons: Increases number of cycles needed for deeper memory accesses, since each
module uses 1 clock cycle; requires control module to appropriately mask address
bits between the different modules

e Interface with the OpenRAM modules through the Wishbone protocol

o Pros: Projects will have 1 additional set of Wishbone Master ports; no additional
ports for interacting directly with OpenRAM modules

o Cons: Requires an OpenRAM wrapper that maps its ports to Wishbone Slave
ports; does not support parallel memory accesses

Based on these comparisons, we decided to go with the last method: using the Wishbone protocol.

16

We chose this option because it should be straightforward to implement and has the least

significant drawbacks in size, functionality, and performance.

4.3 FINAL DESIGN

4.3.1 Overview

Our design uses the open-source Caravel user project template, which can be found on GitHub.

This project template is designed specifically for the chip fabrication program we are using. The
Caravel chip architecture is shown below in Figure 3.

T T

Storage (memory)

Management SoC wrapper

IRQ

User project wrapper

Caravel Hamess Chip =
|x93g L2}
5 N 2eee o
2 g g 8329 &
< ° SRR E
Y ¥ | T |
\ Padframe
e e ey b e ue
I |user D .])
i | Rom) Clocking and DLL | | POR :
: |
|
@ System pad data routing
(«b] SPI control gpio data |
L | _I - GPIO configuration I
< | | GPIO 1 and routing
L ! Housekeeping serial Ioader_ —— —aJ
C I — —
) | user_clock |
& :] wishbone I
% I SoC core - 1-bit aPIO B I
S
© 1 83 —{Flash controller a |
- S5 Wishbone—{ 5 |
- UART o
© I CPU g% bus § II |
i [SPI master \ 2| b :
]
| = o ‘{ Logic analyzer I é logic analyzer I
S
!] —{ User input enables I I
I]e |
I |
I |
I |
T |

The user project wrapper, outlined in blue in the lower right corner, is the chip’s user area. This is

Figure 2: Caravel Chip Architecture [1]

where our framework and all user project modules will be implemented. The part outlined in red is

the management core. This space contains the chip’s resources, including memory, the Wishbone
Master, the logic analyzer, and GPIO configuration. The management core is configured externally
through software. Our framework will connect the various management core ports to the user

projects, as shown in Figure 3.

17

Large Project Large Project

iititil

SPINE
OpenRAM | | Small Small | [OpenRAM| | Small
1kBit | | Project | | Project | | 1kBit || Project
OpenRAM| | Small Small | |OpenRAM| | Small
1kBit | | Project | | Project | | 1kBit || Project
Small Small Small Small Small -
Project | | Project | | Project | | Project | | Project | | control

Figure 3: Framework Diagram

4.3.2 Detailed Design and Visual(s)

Figure 4 depicts the general design composition of our user project framework. Our design
connects interchangeable user projects, pictured in the top half, to the resources provided by the
Management Core SoC and the GPIO ports, pictured on the bottom. Only one user project will be
active and communicating with the Managemen SoC at a time. The Management SoC contains the
Wishbone Bus (WB) Master and the Logic Analyzer (LA) modules. Both of these are used to
communicate with the user projects and transfer data, and there are separate ports for data going in
and out of these modules.

Each project can be reset individually. The project reset bus signal will come from the Wishbone
Bus and be stored in a control signal register. The active user project will be selected using a value
outputted by the Wishbone Bus and stored in another control signal register. Each project’s data
output will be multiplexed based on the selected value and returned to the Management SoC. The
data sent from the Management SoC to the user projects will be inputted to the active project.

18

Inactive projects will receive data that is all zeros. 2-1 multiplexers will select between the resource
data and o values, and the select bits will come from a one-hot decoder.

user_project_wrapper

Wishbone Adder 1 Variable MAC SD Seven Seg Adder Regfile
—> WBS_dat_i —»| WBS_dat_i —>| WBS_dat_i —> WBS_dat_i
WBS_dat_o WBS_dat_o WBS_dat_o WBS_dat_o
LA_data_in LA _data_in LA data_in LA data_in
LA_data_out LA_data_out <— LA_data_out <— LA_data_out
10_in 10_in 10_in 10_in
{ 10_out 10_out «—{ 10_out «—| 10_out
CLK CLK —> CLK —> CLK
RST RST —>| RST —>| RST
proj_sel(i) proj_sel(i) proj_sel(i) proj_sel(i)
Wishbone Adder 2 Wishbone PWM Wishbone Seven Seg SPI Controller
—>| WBS_dat i —>| WBS_dat i —>| WBS_dat i —»| WBS_dat_i
WBS_dat o WBS_dat_o WBS_dat_o WB S_ d at_ o
LA_data_in LA_data_in LA_data_in LA d;ta ;‘
LA_data_out LA_data_out LA_data_out < LA data out
10_in 10_in 10_in 10 in
10_out 10_out 10_out 2 | IO_out
CLK CLK CLK — CLK
RST RST RST
proj_sel() proj_sel(i) proj_sel(i) oo sy Lo
proj_sel(i)
Wishbone Helper Control Signals f
CLK ack_o —» data_i proj_sel l l eoe l l
stb_i we_o we_i proj_rst —T -
seli oyl RST addri XNW Lce
t t ' t 1 1 [
k & . - L. 10 data_in
58 S 5% 9 % 9 48 Data_in Data_out GPIO - Oaata out
S o § 3% 2% 8 £ 38
© & 3 © B
Wishbone Master Logic Analyzer
Management Core
Figure 4: Design Schematic
Acronyms

e CLK: Clock; system clock used by the Management SoC and all projects

e GPIO: General-Purpose Input/Output; ports handling both incoming and outgoing digital
signals

e [O: Input/Output; data transfer to or from the chip

e LA: Logic Analyzer; sends logic signals between the Management SoC and user projects

e RST: Reset; when high, clears all module values to o

e SoC: System-on-a-chip, integrated circuit design that combines the functions of an
electronic device onto a single chip

e WB: Wishbone Bus; connects modules to the Management SoC and handles data transfers

19

e WBS: Wishbone Bus Slave; module that responds to transactions initiated by the Wishbone
Bus master in the Management SoC

e WE: Write enable; signal that enables writing data to the respective location

During testing, we created test modules to establish how our framework fit together. This
established the spatial requirements our design would occupy. For fabrication, we required modules
to include with our design, of a requisite complexity. We gathered a number of modules from

undergraduate students currently in the ISU Chip Fabrication Co-curricular Team. These consisted
of:

Wishbone Adder (x2)

Variable MAC

SD Seven Segment Display
Adder-Register File Datapath
Wishbone PWM

Wishbone Seven Segment Display
SPI Controller

4.3.3 Functionality

With our design, users will be able to create independent ASIC projects and place them as macros
in our framework. As we stated before, multiple projects can be placed in the framework at once,
and each project will be able to run independently and access the management core.

After placing their project in our framework, the user will configure the management core through
software to select their project as active. They will then be able to interact with their project
normally, with the same functionality as if their project was the only component inside the user
space.

4.3.4 Areas of Concern and Development

Throughout our brainstorming and design process, we have had regular communication with our
client to ensure our design will meet user needs. However, due to the nature of the project, we have
two main concerns:

e Will our solution’s current level of complexity support all possible projects going forward?
e With our solution’s current level of complexity, will all expected modules fit in the die area?

We have communicated these concerns with our client, and they have expressed that the total
number of projects can be reduced if needed. They have also approved of our design, so we can
assume that future user projects will be appropriately supported within reason.

Additionally, our client outlined stretch goals to strive for once we get further in the development
process:

e Optimize power through clock gating on inactive projects
e Preserve the state of all inactive projects, rather than resetting them in between uses

4.4 TECHNOLOGY CONSIDERATIONS

Our project fully utilizes open-source tools and project architecture. Open-source software is
usually free to use and modify, making it a cost-effective solution. Our project architecture is

20

accessible to anyone and publicly published on GitHub. Open-source projects also often have a
large community of contributors that can help find and fix bugs.

However, there are also trade-offs. Open-source projects often lack official support or
documentation, resulting in a learning curve for new users. Throughout our planning and design
process, we have sometimes needed to search through multiple repositories and wiki pages to find
the data we are looking for. Additionally, open-source software can have compatibility issues, as
projects may not always have full integration with different operating systems. To combat this, we
are using a Linux virtual machine that contains an installed toolflow as our development
environment. This way, our team does not have to worry about environmental inconsistencies or
incompatibilities.

4.5 DESIGN ANALYSIS

Prior to full implementation of our framework, we performed analysis on user project size limits.

Run# | Changed Settings | #Ports |CLOCK F OCK_PORT| CLOCK NET | FP_SIZING | DIE AREA |PL_TARGET_DENSITY| Pass?(Y/N) Errors. Notes Date Run
adder_wrap 1 - 607 25 (40 MHz) wh_clk_i [blank] absolute 00700700 055 Y 412124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
) (Running 10 placement) |(607) exceeds maximum number of
adder_wrap 3 DIE_AREA 607 25 wh_clk_i [blank] absolute 00350 350 055 N available positions (424). 412124
adder_wrap 3 DIE_AREA 607 25 wh_alk_i [blank] absolute 00525525 055 Y
|Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(607) exceeds maximum number of
adder_wrap 4 DIE_AREA 607 25 wh_clk_i [blank] absolute 00438438 055 N available positions (530). 412124
. Failed on step 4 [ERROR PPL-0024] Number of 10 pins
. (Running 10 placement) |(607) exceeds maximum number of
adder_wrap 5 DIE_AREA 607 3 wh_clk_i [blank] absolute 00482482 055 N available positions (584). 412124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
. (Running 10 placement) |(607) exceeds maximum number of
adder_wrap 6 DIE_AREA 607 2 wh_clk_i [blank] absolute 00500 500 055 N available positions (606). 412124
adder_wrap 7 DIE_AREA 607 25 wh_clk_i [blank] absolute | 00501501 055 Y 412124
adder_wrap 8 | PL_TARGET_DENSITY | 607 25 wb_clk_i [blank] absolute 00501501 1 Y 412124
adder_wrap 9 | Added WB master ports [711 25 wh_clk_i [blank] absolute 00700700 055 Y 419124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(711) exceeds maximum number of
adder_wrap 10 DIE_AREA 7™ 25 wb_clk_i [blank] absolute 00501501 055 N available positions (608). 419124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(711) exceeds maximum number of
adder_wrap 1 DIE_AREA 71 25 wh_clk_i [blank] absolute 00550 550 055 N available positions (666). 4/9124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(711) exceeds maximum number of
adder_wrap 12 DIE_AREA 7 25 wh_clk_i [blank] absolute 00575575 055 N available positions (696). 419124
adder_wrap 13 DIE_AREA 7 25 wh_clk_i [blank] absolute 00600 600 055 Y, 4/9124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(711) exceeds maximum number of
adder_wrap 4 DIE_AREA 71 25 wh_clk_i [blank] absolute 00585585 055 N available positions (708). 419124
Failed on step 4 [ERROR PPL-0024] Number of 10 pins
(Running 10 placement) |(711) exceeds maximum number of
adder_wrap 15 DIE_AREA 71 25 wb_clk_i [blank] absolute 00586 586 055 N | available positions (710). 419124
adder wrap 16 DIE AREA 71 25 wb_clk i [blank] absolute | 00587587 055 Y 419124

Figure 5: Hardening Data

Our team has researched and become familiar with the Caravel project architecture. We have begun
implementing and testing the various low-level components our design uses, including a variable
size register, a 2-to-1 multiplexer, and a 5-to-32 decoder. As we verify these designs through
simulations, we can begin implementing the base design we outlined earlier.

One important step of the build process is hardening designs, which consists of synthesis, place and
route, and error checking. Successful hardening results in generated GDSII files. While a
component may pass simulation, it must also be hardened to ensure the design will work once
implemented on hardware. In order to harden a design, a configuration file must be created that
contains settings for various parameters, such as design size, clock frequency, and density. Part of
the design process involves finding the optimal configuration settings that allow hardening to pass,
while still meeting project constraints.

In order to find the best configuration, we ran various hardening configurations on an example
project and recorded the results, as shown in Figure 5. As we experimented with different parameter
values, we determined the various constraints we will need to consider when implementing the
wrapper for the different user projects. Based on the data we have collected so far, we have found
that a project area can have a minimum size of 501 pm x 501 pm while still supporting the expected

21

607 ports. Furthermore, if we include OpenRAM and the Wishbone OpenRAM interface on each
project, this introduces additional ports and will increase the minimum hardening area. After
performing further tests, we found that the minimum size with OpenRAM was 587 x 587 pum.

After beginning implementation, we also had to consider how to integrate the framework and user
projects at the top-level. As discussed, submodules within a design can be hardened, creating a
blackboxed macro. However, blackboxing modules comes with tradeoffs, creating several options for
integrating our full design.

e Method 1: Macro-First Hardening
o The first method involves pre-hardening all of the user logic and projects into a
single macro that is then placed in the wrapper. This means there are no standard
cells at the top-level and instead, one large user macro is placed. This simplifies the
place and route process, which defines where modules are placed in the physical
layout.
e Method 2: Full-Wrapper Flattening
o Another method is to merge the user macro into the wrapper, so all of the logic
and projects are placed directly in the wrapper and hardened all at once. This
allows the user to utilize the entire wrapper area but can take additional
configuration.
e Method 3: Top-Level Integration
o The third method is to place both macros and standard cells at the top level. This
means there are both hardened modules and additional logic present in the
wrapper. This method is suitable when buffering is needed at the top level.

Based on these methods, we narrowed the most suitable option down to methods two and three.
Initially, we were using method three. We were hardening the user projects, placing the macros in
the user wrapper, and adding our framework logic in at the same level. However, this method posed
some limitations. The minimum project die area with OpenRAM that we found earlier meant that
in the future, we would be limited to around 40 projects, not including space left for our framework
logic. Furthermore, if we wanted to re-introduce external SRAM, this would take up more area.

Based on this, we decided to look into method two, where there are no pre-hardened macros. This
means that user projects do not have a minimum size, and we have the full user area to utilize. This
allows us to place as many user projects and as much logic that we want into the user wrapper, and
the only limit we have is the size of the wrapper itself. Additionally, we were able to talk directly
with Efabless team members, and they were able to help us find the best hardening configuration to
use this method. For these reasons, our framework was fully implemented directly in the user
wrapper per the top-level flattening method, and we successfully hardened the full design.

5 Testing

We have a comprehensive testing plan that will thoroughly test all of our submodules and the
top-level framework design. We want to ensure every component in our design is fully functional
and passes hardening and pre-check in preparation for fabrication.

22

5.1 UNIT TESTING

All of the modules in our design will have one test that covers basic use and edge cases of their
functionality. These tests will be written as Verilog testbenches. They will be performed by RTL and
GL simulations with the OpenROAD tools. We will use GTKWave to view and verify the test results.
We will test each component as they are implemented.

Modules Under Test:

5 to 32 Decoder

32 to 1 Multiplexer

N-bit Register

Wishbone Bus Control Module
OpenRAM Module

e Example User Projects

We have already begun unit testing. Results can be seen in Appendix 10.1.

Due to the implementation of the framework itself, there were no independent logic components
that required testing.

All user projects placed in the framework were tested independently. These tests involved RTL and
GL simulations and tests run on the FPGA. These tests were completed so that each project had
correct functionality before being placed and tested in the framework.

5.2 INTERFACE TESTING

We will also test interfaces between components to ensure communication between the various
components of our framework. These tests will verify writing and reading values between the
master and slave modules, as well as ensure that modules adhere to the bus protocols. These tests
will be written as Verilog testbenches. They will be performed by RTL and GL simulations with the
OpenROAD tools. We will use GTKWave to view and verify the test results.

Interfaces Under Test:

Wishbone Bus Interface with User Projects
Wishbone Bus Interface with the overall Framework
GPIO Interface with User Projects

LA Interface with User Projects

5.3 INTEGRATION TESTING

After testing individual modules and interfaces, we will integrate everything into the top-level user
project wrapper to create our framework design. We will ensure that all connections are
implemented according to our design schematic. From there, we will undergo extensive testing of
our overall framework, utilizing example user projects to place in our design. We will create tests
that verify different projects can be enabled, and that all user projects can properly access the chip
resources when active.

5.4 SYSTEM TESTING

Upon integration, we will test our framework by creating multiple testbenches that implement and
activate different example user projects. We will simulate C code to program the Management SoC

23

to verify that the user projects can properly interface with the various chip utilities. We will also run
the user project wrapper through hardening and pre-check to ensure the design can be properly
synthesized. This will involve creating hardening configurations that properly set different
hardening parameters for the project.

5.5 REGRESSION TESTING

To ensure we are not creating errors and breaking our existing “functional” product, we will
incrementally insert pieces of our project together and run the same tests or slightly edited versions
to check our results. Assuming everything operates as we intend, we will see the same results and
individual stages throughout this testing. The two main stages to test our projects with and without
the OpenRAM modules. Without memory should prove to be much easier, and once we have that
as a base for testing we can insert multiple memoryless projects to ensure we can operate more than
one project in our project. Finally, we would complete the same process with memory projects and a
combination of both.

5.6 ACCEPTANCE TESTING

Once we have ensured our design meets all functionality requirements, we will harden our design
through the OpenROAD toolflow to ensure we meet timing and area requirements. This process
includes place and route and finding the optimal hardening configuration. We will then verify our
design meets all fabrication specifications by running Efabless precheck on our project. Precheck
will perform additional DRC and LVS tests.

5.7 BRING-UP & PHysIicAL TESTING

After passing acceptance testing and submitting our design to Efabless, we will develop a bring-up
testing plan. This will include a test project template that future users will use to test that their
project can be integrated into our framework. The template will include the OpenRAM modules
and interface, as well as the expected connections with the rest of the chip. Users will utilize the
template to ensure their design successfully interfaces with all components of our framework before
integrating their project into our design.

We will also utilize the ISU Chip Fabrication FPGA board for physical tests. Our design will be
flashed to the FPGA board, so we can perform physical testing before our chip finishes fabrication.

5.8 RESULTS

Our testing results will be waveforms collected from running test benches on our components.
Because we are creating the test benches, we will have expected output values when looking at the
waveforms. We can tell if we meet the speed and data requirements needed to call our tests
successful through these graphs. Additionally, successful acceptance testing will produce successful
hardening and precheck logs that demonstrate our design meets all required checks.

Prior to submitting our design for tapeout on November 11, 2024, we successfully ran RTL and GL
simulations and tests on the FPGA that verified our framework design. These tests included cases to
test each core interface between the user projects and the chip resources, as well as independent
project selection, reset, and functionality. Additionally, each project included in our tapeout

24

submission was tested within the framework by the students who authored each project. Results for
these tests can be found in Appendix 10.3.

During hardening, we got timing warnings for max hold, slew, and capacitance violations. However,
after careful analysis and direct communication with the Efabless team, we believe they aren’t
critical. We were able to determine the timing issues were caused by specific user projects, not the
framework itself. We saw that if we took those user projects out of the framework and rehardened
the design, the timing warnings went away. Furthermore, the paths causing these errors were
between LA and IO pins, which are asynchronous interfaces. Therefore they were non-critical
timing paths.

We also performed multiple iterations of chip-level static timing analysis, each time with different
hardening parameters, to see their impact on the timing violations. These runs involved trying
different clock frequencies and adjusting the max slew and capacitance margins. After going over
these results with the Efabless team, they said our results were passable, and we submitted the
iteration that minimized the timing violations.

Based on these results, we believe the risk to the functionality of the individual projects should be
minimal once the chip comes back from fabrication. Additionally, it may also provide useful
information for debug analysis during the bring-up process. Students in Chip Forge who will be
testing our physical chip will be able to observe what timing violations may yield. If anomalous
behavior does occur due, the students will be able to understand the root cause. Furthermore, as
more chips are fabricated and brought up through the co-curricular, students will be able to see
variation in performance between chips. Overall, the timing violations we faced gave both our team
experience addressing real industry issues and it will provide future students analysis and
debugging opportunities.

6 Implementation

6.1 DESIGN ANALYSIS
Semester 1:

Our implementation plan for next semester will cover Milestones 4-7:
e Milestone 4: Integrate All Modules
e Milestone 5: Test Overall Design
e Milestone 6: Submit Design to Efabless
e Milestone 7: Complete Bring-Up Documentation & Physical Testing

Currently, we have already begun implementing basic modules and performing unit tests. We plan
to finish individual module implementation and begin integrating everything into the top-level
wrapper shortly after next semester begins. Testing will take place throughout implementation until
the Efabless submission deadline, in late October or early November. After submission, we will
focus on developing our bring-up and physical testing plan.

Semester 2:

25

We fully implemented our framework with 8 fully functional user projects provided by the

co-curricular team, and we submitted our design for tapeout by the Efabless deadline of November

11, 2024. Our final implemented framework matches the design outlined in section 4. It fully
multiplexes the Wishbone, 10, and LA ports between all the projects, and each project can be
independently selected and reset through programming the management core.

Our design has been tested through RTL, GL, and FPGA simulations. It was also verified through

the Efabless hardening, precheck, and tapeout checks. These processes are all required for tapeout

submission. In addition to running these checks, we were also in regular contact with members of

the Efabless team. During these meetings, we were able to verify the results of our testing were

reasonable. Overall, through multiple iterations of testing and design checks, we were able to verify

our design is viable and was successfully submitted for tapeout.

Figure 6: Final Hardened Design

7 Professional Responsibility

7.1 AREAS OF RESPONSIBILITY

Responsibilities

Our Definition

IEEE Definition

NSPE Definition

26

Work Competence

Performing work that
is your own and meets
the standards you have

Perform work of high
quality, integrity,
timeliness, and

Perform services only
in areas of their
competence; Avoid

provide the best
product possible.

understandable to
stakeholders.

set. professional deceptive acts
competence.
Financial The product we deliver | Deliver products and Act for each employer
Responsibility will be created using services of realizable or client as faithful
reliable components value and at reasonable | agents or trustees
and with reliable costs
services.
Communication | We will communicate | Report work truthfully, | Issue public statements
Honesty and collaborate to without deception, and | only in an objective

and truthful manner;
Avoid deceptive acts

Health, Safety,

We will practice safe

Minimize risks to the

Hold paramount the

users.

society and
communities.

Well-Being procedures and not safety, health, and safety, health, and
cut corners to create well-being of welfare of the public
hazards to the users or | stakeholders.
ourselves
Property We will not steal the Respect the property, Act for each employer
Ownership ideas or take ideas, and information or client as faithful
responsibility for of clients and others. agents or trustees.
products that are not
ours.
Sustainability We will create a Protect the N/A
product that meets environment and
our standards and will | natural resources locally
withstand constant and globally.
use.
Social Our product will Produce products and Conduct themselves
Responsibility better advance the services that benefit honorably, responsibly,

ethically, and lawfully
so as to enhance the
honor, reputation, and
usefulness of the

profession.
Table 3: Areas of Responsibility
7.2 PRO]ECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS
Responsibilities Relation to Our Project Performance

Work Competence

We should hold ourselves to use our

We have been creating and using

27

work and not steal from others.

our work and ideas within our
project.

and our client.

Financial We must be mindful of fabrication We are working towards the Fall
Responsibility costs by working to meet 2024 deadline.
submission deadlines.
Communication We must hold ourselves accountable | We have been communicating
Honesty to communicate with each other our progress to our client and

sharing ideas between team
members, but we could increase
communications and timeliness.

Health, Safety,

We should promote a supportive

We are considering our users and

design practices and choose
sustainable materials for
components.

Well-Being learning environment for our future | the user experience throughout
users and for ourselves. the design process.
Property Ownership | We must respect the ideas of our We have shared and respected
clients and our teammates. every team member's ideas and
work throughout the project.
Sustainability We should adopt energy-efficient We have make various design

decisions based on performance
trade-offs.

Social Responsibility

We are responsible for providing a
product to enhance users' learning.

We have kept the goal of our
product which is to enhance the
learning capabilities of the user
in mind while completing our
project.

Table 4: Project-Specific Responsibility

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Our most applicable professional responsibility area is Social Responsibility.

Our team has a social responsibility to provide the best product we can to the student users to

facilitate learning for future students. We plan to consider every type of user and how they might

think differently. We will use these ideas to create an easy-to-use solution that allows them to learn

more about ASIC development. We will also have thorough testing to ensure our product meets our

standards. This approach will cover more than just our social responsibility to provide a product
that facilitates the learning experience. It can also make it fun both for the users and us.

28

8 Conclusions

8.1 SUMMARY OF PROGRESS

Our project was to build a chip framework that supports user ASIC projects created by students in
the ISU Chip Fabrication Co-Curricular Team. For our design, we used open-source tools and
project architecture provided by Efabless. Our chip framework integrated all project modules into a
unified ASIC by connecting each module to the chip’s GPIOs and management wrapper, or
microcontroller. All of the chip’s resources are multiplexed between the different projects,
depending on which is active at the time. The design process involved creating a chip layout and
fully functional management core, as well as configuration scripting, Verilog coding, and C
programming. Through hardening tests and component simulations, we ensured that our design is
functional and can be properly fabricated. We also developed a bring-up plan for future students
that will use our framework.

Our group began by learning to use tools and equipment provided by our client and previous
groups. This consisted of tests and examples by Caravel Efabless. After becoming familiar with the
toolset we began to experiment and create our files and run our tests. This was the start of our
framework, and most of our work is related to this process. We have since created a schematic for
our design. This enabled basic functionality, through components such as register files, decoders,
and muxes.

The biggest challenge our team faced was becoming familiar with the toolset and learning both the
Verilog language, and how to integrate these modules into our design. There had been significant
work done by a previous team that greatly assisted us in this process. Our next step was to
determine the memory aspect of our project. There is not a lot of documentation on this, and it is
up to our team to experiment and run tests to determine the best way to implement it. After many
different attempts to integrate it, we consulted with the maintenance team for ChipIgnite. They
gave us advice that allowed us to decisively do-away with this issue.

In the future, we will have to run tests on the completed framework to ensure that our project
behaves the way it was designed. We will have to place an order for our design to be created and
chips to be sent to lowa State. Our design will then be iterated on by future students and potentially
used as a part of a class.

We have now reached a finished state with regard to our original design. We submitted our design
for fabrication on November uth. We expect to receive a working copy back sometime in the next
Calendar year, after our graduation. This will hopefully be a first step in pushing the FPGA
extracurricular program forward at ISU, and allowing new users to further our work.

8.3 VALUE PrOVIDED

The value provided by our project is twofold. Because this was a novel project with no
previously-established methodology, what we do is valuable not only for lowa State, but for any
future students who use this as a springboard for their careers. What we’ve created here will be
documented, with our errors and discoveries laid out for future students to iterate upon such that
this design can be further improved.

29

8.4 NEXT STEPS

Our goal was to create a framework and feasibly expand the capacity of Chip Forge to create
projects with student’s designs. This we believe we were successful in. We submitted our design for
fabrication on November uth. It will be brought up by students in the Spring semester.

The next steps for our project are in the hands of the ISU Chip Forge co-curricular team. They will
receive the physical chip on our behalf in the spring. When that happens, they may proceed to
perform physical testing and usage of our chip in an academic or iterative context. Our Verilog
design may be implemented into further projects and used to include undergraduate designs for
fabrication. Furthermore, future senior design projects may choose to iterate based on our design
and create something altogether more intricate.

30

9 References

Technical References:

“Caravel Harness,” Efabless. [Online]. Available: https://caravel-harness.readthedocs.io/en/latest/.

[Accessed April 16, 2024].

“Caravel Management SoC,” Efabless. [Online]. Available:
https://caravel-mgmt-soc-litex.readthedocs.io/en/latest/. [Accessed April 16, 2024].

Efabless, “Efabless/caravel_user_project,” GitHub. [Online]. Available:
https://github.com/efabless/caravel_user_project. [Accessed April 16, 2024].

“Tiny Tapeout,” Tiny Tapeout. [Online]. Available: https://tinytapeout.com/.
[Accessed April 30, 2024].
Figures:

[1] Efabless, “Efabless/caravel,” GitHub. [Online]. Available:
https://github.com/efabless/caravel. [Accessed April 16, 2024].

31

10 Appendices

10.1 APPENDIX 1 - FRAMEWORK USER GUIDE

The Chip Forge framework is able to support up to 32 separate project modules in a single Caravel
user project. By multiplexing the user area’s inputs and outputs to all project modules, the
framework allows each project to be independently selected and run with full functionality, without
affecting the other project modules.

This guide describes how to add and test projects within the framework, harden the framework, and
submit the design to Efabless. For a full guide on developing and bringing up projects with Caravel,
see the Chip Forge documentation here:
https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/.

10.1.1 Adding a Project to the Framework

Project Requirements:

Project only uses wishbone addresses below 0x38000000

Project is instantiated inside a user_project_wrapper.v file

Project successfully hardens inside the user_project_wrapper.v file
All source files are in the library repository

Implementing Your Project Inside the Framework:

1. Ensure all project source files are in the /library/[PROJECT_NAME]/verilog/rtl directory

2. Ensure there is an example user_project_wrapper.v file in
/library/[PROJECT_NAME]/verilog/dv/[MODULE_NAME]

3. Checkout the framework GitLab repo. Make sure to do a recursive checkout, so the library
submodule is also downloaded.

git clone --recursive git@git.ece.iastate.edu:sd/sddec24-12.git

4. Copy the user_project_wrapper.v from
/library/[PROJECT_NAME]/verilog/dv/[MODULE_NAME] to /verilog/rtl/projects/

5. Change the copied user_project_wrapper.v file name AND module name from
“user_project_wrapper” to a new, unique name for the project module, ex.
“wishbone_adder_project”

6. In /openlane/user_project_wrapper/config.json, add the relative path of all project source
files (in /library/[PROJECT_NAME]/verilog/dv/[MODULE_NAME] AND
/verilog/rtl/projects) to the VERILOG_FILES parameter.

"dir::../../library/[PROJECT_NAME]/verilog/rtl/[SUBMODULE_NAME]",

"dir::../../library/[PROJECT_NAME]/verilog/rtl/[MODULE_NAME]",
"dir::../../verilog/rtl/projects/[PROJECT_MODULE]"

32

https://git-pages.ece.iastate.edu/isu-chip-fab/documentation/#/

7. Add an instantiation of your /verilog/rtl/projects/[PROJECT_MODULE] to
/verilog/rtl/user_project_wrapper above the CONTROL LOGIC comment header

a. In the generate loop before the CONTROL LOGIC comment header, increment the

initial i value in the for loop. Make note of the old i value.

// before

// after

for (1 =8; 1i<=31; i

for (i =9; i<=231; 1

i + 1) begin

i + 1) begin

b. For each port in the module instantiation, pass in the following signals. For all
arrays, set the index to the old i value. (In the example above, index=8)

Port Signal to pass in
wb_clk i wb_clk i

wb_rst_i wb_rst_i_s[index]
wbs_cyc i wbs_cyc_i s[index]
wbs_stb i wbs_stb_i s[index]
wbs_we_i wbs_we_i_s[index]
wbs_sel i wbs_sel i s[index]
wbs_adr_i wbs_adr_i_s[index]
wbs_dat_i wbs_dat_i_s[index]
wbs_ack_o wbs_ack_o_bus[index]
wbs_dat_o wbs_dat_o_bus[index]

la_data_in

la_data_in_s[index]

la_data_out la_data_out_bus[index]
la_oenb la_oenb_s[index]

io_in io_in_s[index]

io_out io_out_bus[index]
io_oeb io_oeb_bus[index]

user_clock2

user_clock2

user_irq

user_irq_bus[index]

33

Note: It may be easiest to copy a previous project module instantiation and update

the module name and index.

After completing these steps, your project should be successfully instantiated inside the framework

and ready for testing within the framework.

10.1.2 Testing Projects Within the Framework

Any existing testbenches and test C code written for individual projects may be reused to test that

project within the framework with slight modifications:

1.

5.

Copy the existing library/[PROJECT_NAME /verilog/dv/[TEST_NAME] folder into
/verilog/dv. Rename the test directory and testbench if desired.

Delete the user_project_wrapper.v file from the dv/[TEST_NAME].

In the C code file, add the following defines at the top of the file

#tdefine PROJ_SELECT (*(volatile uint32_t *)0x38000000)
#tdefine PROJ_RESET (*(volatile uint32_t *)0x38000004)

In the main test method, before any test cases, write the project’s index to the
PROJ_SELECT register. Reset the project by writing the same value to PROJ_RESET if
desired, then clear the reset by writing oxFFFFFFFF.

PROJ_SELECT = 0x00000001; // select projil
PROJ_RESET = 0x00000001; // reset projil
PROJ_RESET = OXFFFFFFFF; // clear reset

The project’s index will be the same value set in step 7b under “Adding Project to the
Framework”

To deselect all projects, write oxFFFFFFFF to PROJ_SELECT.

The test may now be run as either an RTL or GL simulation with the normal commands:

make verify-TEST_NAME-rtl
make verify-TEST_NAME-gl

10.1.3 Hardening the Framework

The framework is hardened without any pre-hardened submodules. The hardening configuration

file for the user_project_wrapper should be located at openlane/user_project_wrapper/config.json.

The following configuration file should be set as follows:

All sourece files for every project must be listed under VERILOG_FILES, like the following:

"VERILOG_FILES": [

"dir::../../verilog/rtl/defines.v",
"dir::../../verilog/rtl/projects/adder_regfile project.v",
"dir::../../verilog/rtl/projects/sdmay25 17 project.v",

34

"dir::../../verilog/rtl/projects/spi_controller_project.v",
"dir::../../verilog/rtl/projects/wishbone_adder_project.v",
"dir::../../verilog/rtl/projects/wishbone_pwm_project.v",
"dir::../../verilog/rtl/projects/variable_precision_mac_project.v",
"dir::../../verilog/rtl/projects/wishbone_seven_seg project.v",
"dir::../../library/adder_regfile_datapath/verilog/rtl/add_sub.v",
"dir::../../library/adder_regfile_datapath/verilog/rtl/datapathl.v",
"dir::../../library/adder_regfile_datapath/verilog/rtl/regfile.v",
"dir::../../verilog/rtl/user_project_wrapper.v"

1,

Additionally, use these settings as a reference for hardening the wrapper:

"BASE_SDC_FILE": "dir::base_user_project_wrapper.sdc",
"CLOCK_PERIOD": 25,
"CLOCK_PORT": "wb_clk_i",

" @": "Set to number of cores to use for routing, dependent on build
machine",

"ROUTING_CORES": 16,

"KLAYOUT_XOR_THREADS": 16,

"KLAYOUT_DRC_THREADS": 16,

" 1": "Disable to speed up builds, test with these enabled before
submission",

"RUN_KLAYOUT_XOR": 1,

"RUN_KLAYOUT_DRC": 1,

"PL_TARGET_DENSITY": 0.3,
"FP_CORE_UTIL": 45,

"I0 _SYNC": 1,
"MAX_TRANSITION_CONSTRAINT": 1.0,
"MAX_FANOUT_CONSTRAINT": 16,
"PL_RESIZER_SETUP_SLACK_MARGIN": 0.4,
"GLB_RESIZER_SETUP_SLACK_MARGIN": 0.2,
"GLB_RESIZER_HOLD_SLACK_MARGIN": 0.2,
"PL_RESIZER_HOLD_SLACK_MARGIN": 0.4,
"SYNTH_BUFFERING": 0,
"RUN_HEURISTIC_DIODE_INSERTION": 1,
"HEURISTIC_ANTENNA_ THRESHOLD": 110,

" 2": "Change synth strategy if timing errors are not being
resolved",
"SYNTH_STRATEGY": "AREA 0",

"RUN_LINTER": 1,
"PL_RANDOM_GLB_PLACEMENT": @,
"SYNTH_ELABORATE_ONLY": 0,
"PL_RESIZER_DESIGN_OPTIMIZATIONS": 1,
"PL_RESIZER_TIMING_OPTIMIZATIONS": 1,
"GLB_RESIZER_DESIGN_OPTIMIZATIONS": 1,
"GLB_RESIZER_TIMING_OPTIMIZATIONS": 1

J

35

"PL_RESIZER_BUFFER_INPUT_PORTS": 1,
"FP_PDN_ENABLE_RAILS": 1,
"GRT_REPAIR_ANTENNAS": 1,
"RUN_FILL_INSERTION": 1,
"RUN_TAP_DECAP_INSERTION": 1,
"FP_PDN_CHECK_NODES": 1,
"RUN_CTS": 1,

"RUN_CVC": 1,
"MAGIC_DEF_LABELS": O,
"QUIT_ON_SYNTH_CHECKS": @,
"FP_PDN_VPITCH": 180,
"FP_PDN_HPITCH": 1880,
"FP_PDN_VOFFSET": 5,
"FP_PDN_HOFFSET": 5,
"MAGIC_ZEROIZE_ORIGIN": O,
"FP_SIZING": "absolute",
"UNIT": 2.4,

"FP_IO_VEXTEND":
"FP_IO_HEXTEND":
"FP_IO_VLENGTH":
"FP_IO_HLENGTH":

"expr::2 * $UNIT",
"expr::2 * $UNIT",
"expr::$UNIT",
"expr::$UNIT",

"FP_IO_VTHICKNESS_MULT": 4,
"FP_IO_HTHICKNESS MULT": 4,
"FP_PDN_CORE_RING": 1,

"FP_PDN_CORE_RING_VWIDTH": 3.1,
"FP_PDN_CORE_RING_HWIDTH": 3.1,
"FP_PDN_CORE_RING_VOFFSET": 12.45,
"FP_PDN_CORE_RING_HOFFSET": 12.45,
"FP_PDN_CORE_RING_VSPACING": 1.7,
"FP_PDN_CORE_RING_HSPACING": 1.7,
"FP_PDN_VWIDTH": 3.1,
"FP_PDN_HWIDTH": 3.1,
"FP_PDN_VSPACING": "expr::(5 * $FP_PDN_CORE_RING_VWIDTH)",
"FP_PDN_HSPACING": "expr::(5 * $FP_PDN_CORE_RING_HWIDTH)",
"VDD_NETS": [

"vccdl",

"vcecd2",

"vddal",

"vdda2"

1

"GND_NETS": [

"vssdl",

"vssd2",

"vssal",

"vssa2"

1,
"SYNTH_USE_PG_PINS_DEFINES": "USE_POWER_PINS",

"pdk::sky130*": {

"RT_MAX_LAYER": "met4",

"DIE_AREA": "© © 2920 3520",

"FP_DEF_TEMPLATE":
"dir::../../openlane/user_project_wrapper/fixed_dont_change/user_project_wra
pper.def"

36

10.1.4 Submitting to Efabless

In order to submit a design for tapeout, all source files must be committed and pushed to an
Efabless Git repository. Due to the Efabless servers and toolflow setup, the Efabless Git repository
cannot contain any Git submodules. Pushing large file sizes may also cause corruption.

The following example steps can be used to properly push the framework from an Iowa State GitLab
repository to an Efabless repository:

git clone git@git.ece.iastate.edu:sd/sddec24-12 sddec
cd sddec

git checkout tapeout

git submodule update --init

cd library/

git fetch # Verify library is latest commit

cd ..

git log

make setup

make compress

cd ..

cp sddec/verilog/gl/user_project_wrapper.v.gz .
gunzip user_project_wrapper.v.gz

cat user_project_wrapper.v

cd sddec

git log

Delete library submodule references
rm .gitmodules

rm library/.git

rm -rf .git

Remove repository history

git init

git add -A

git status

git commit -m "Final Tapeout”

git remote add origin
ssh://git@repositories.efabless.com/duwe/ChipForgeFrame.git
git branch

git push --force origin master:main

cd ..

git clone ssh://git@repositories.efabless.com/duwe/ChipForgeFrame.git tmp
cd tmp

cd verilog/

cd gl

gunzip user_project_wrapper.v.gz

cat user_project_wrapper.v

37

10.2 APPENDIX 2 - INITIAL DESIGN

10.2.1 Requirements

Functional Requirements

Our project client has outlined the following functional requirements our project must fulfill:

Framework holds 15-20 projects, including small and large projects
Management wrapper controls which project is active

One project is active at a time

Chip resources will be multiplexed between all the projects
Projects will interface with the Wishbone bus, LA pins, and IO pins
The framework will include external OpenRAM modules

Design successfully passes Efabless precheck
Technical Requirements

To meet the expected functionality, our design implementation must meet the following
requirements:

The development follows the Efabless process
Design is implemented in Verilog

Test code is written in Verilog and C

The final design generates a GDS2 file

The design achieves a frequency of at least 20 MHz
User-Based Requirements

To ensure proper user interaction and bring-up, our project must meet the following requirements:

e The project is fully documented on the ISU Chip Fabrication website
e Detailed descriptions of the project explain the framework architecture
e The framework is straightforward to use with minimal help or troubleshooting

10.2.2 Detailed Design and Visual(s)

Figure 7 depicts the initial design composition of our user project framework. Our design connects
small, interchangeable user projects, pictured on the right, to the resources provided by the
Management Core SoC, pictured on the left, and the GPIO ports. Only one user project will be
active and communicating with the Managemen SoC at a time. The Management SoC contains the
Wishbone Bus (WB) Master and the Logic Analyzer (LA) modules. Both of these are used to
communicate with the user projects and transfer data, and there are separate ports for data going in
and out of these modules.

Each project can be reset individually. The project reset bus signal will come from the Wishbone
Bus and be stored in the RST register. The active user project will be selected using a value
outputted by the Wishbone Bus and stored in the SEL register. Each project’s data output will be
multiplexed based on the selected value and returned to the Management SoC. The data sent from
the Management SoC to the small projects will be inputted to the active small project. Inactive
projects will receive data that is all zeros. 2-1 multiplexers will select between the resource data and
o values, and the select bits will come from a one-hot decoder.

38

— Constant - Small Project
e 0 . S N — wBS_dat |
T 32] WBS_dat_o
] 3| I- LA_data_in
dat_o = =R
addr_o addr & |z LA_data_out
we—o) we_out [@ |- 1 LAen
Wishbone M B el 10In
ishbone Master WB Control 10_out
WBM_dat i
data_in CLK 5 32 WBM_dat_o
data_out L IWe Dol 292 | WBM_sel o
- = Decoder 4 =
LAen D_i - rA— IRQ
Logic Analyzer SEL register L CLK
RST
CLK 1
Management Core 1 WE Do 32 &
. - -
CLK D_i o1 .
we i
v RST register 32 Large Project
-
din[7:0] CLK J 32 f: >§< » WBS._dat_i
dout[7:0] WBS_dat_i | é’ .] WBS_dat_o
WBS_dat o oL 15| ‘ r LA data_in
OpenRAM -~ 1 WE Do+ | & |: LA d
o WBS_we_i 1pi § _data_out
i _| T~ s LAen
WBS_sel_i || 32 - y
CLK RAM_sel reg 5 10_in
RAM_sel x @ 10
we 4 5 _out
addr T % E WBM_dat_i
din[7:0] S WBM_dat_o
dout[7:0] OpenRAM 128 WBM_sel_o
Interface 1 IRQ
OpenRAM CLK
GPIO data_in data_out ’ ’ RST
Figure 7: Initial Design Schematic
Acronyms
e CLK: Clock; system clock used by the Management SoC and all projects
e GPIO: General-Purpose Input/Output; ports handling both incoming and outgoing digital
signals
e IO: Input/Output; data transfer to or from the chip
e IRQ: Interrupt Request Signal; designates peripheral devices/processes that are ready
within a module to be serviced by the Management SoC
e LA: Logic Analyzer; sends logic signals between the Management SoC and user projects
e RST: Reset; when high, clears all module values to o
e SoC: System-on-a-chip, integrated circuit design that combines the functions of an
electronic device onto a single chip
e WB: Wishbone Bus; connects modules to the Management SoC and handles data transfers
e WBS: Wishbone Bus Slave; module that responds to transactions initiated by the Wishbone
Bus master in the Management SoC
e WE: Write enable; signal that enables writing data to the respective location

39

10.2.3 Simulation Waveforms

Based on our initial design, our framework included several structural logic modules that were
tested independently. The test results are shown below.

We have finished implementation and unit testing for the following modules:
e 32-to-1decoder
e N-bit register
e Wishbone control module

The waveform results for these unit tests are shown in Figures 8-10.

Time 2 s
1 Joz Je3 Jes Jos Joe Jor Je8 o9 JeBYec Yep JoE flo 11 Jiz 13 14 Nis 16

in[4:0] 0000 | 1.

LI ESRLRT 000+ 000000+)00+ 000+ 000+ 0000000+ 000+ 000 000+ 000+ Jo00+ [0000+)a00+ {000+ 000+ 1000+ 000+ foaw: Joo10+a0z+ oo+)
out[31] =0
out[30] =0
out[29] =0
out[28] =0
out[27] =0
out[26] =0
out[25] =0
out[24] =0
out[23] =0
out[22] =0
out[21] =0
out[20] =0
out[19] =0
out[18] =0
out[17] =0
out[16] =0
out[15] =0
out[14] =0
out[13] =0
out[12] =0
out[11] =0
out[10] =0

out[9] =0
out[8] =0
out[7] =0
out[6] =0
out[5] =0
out[4] =0
out[3] =0
out[2] =0
out[1] =0
out[@] =1

Time 100 ns

clk=1) S | O S S S S [S) S

reset =0
we =1

Figure 9: N-Bit Register

Time
0K
addr_i[31:0] (Gl
module_we_o[2:0]
we_i

40

10.3 APPENDIX 3

Figure 10: Wishbone Control Module

- TESTING RESULTS

To test the functionality of our framework, we ran a test that selected the two different adder

projects, ran independent test cases on each, and reset each independently. The waveform results

are shown in Figure 11.

Time

analog_io0[28:0] =gz

io in[37:0] =x

io oeb[37:0] =0

io oeb s[37:0] =8

io out[37:0] =0

io out s[37:0] =0
la_data in[127:8] =0
la_data_out[127:8] =0
la_data_out s[127:0] =0
la oenb[127:0] =F|
proj_select[31:8] =0
s_wbs_we =0|
user_clock2=9
user_irg[2:0] =9
user_irq s[2:0] =)
veedl =1

veedz =1

vddal=1

vddaz =1

vssal=p

vs5a2 =f

vs5d1 =0

vssd2 =9

wb_clk_i=)
wb_rst_i=)
wbs_ack o=0
wbs_ack_s=0
wbs_adr_i[31:8] =1
wbs_cyc_i=0
wbs_dat_ctrl[31:8] =)
wbs_dat_i[31:8] =x
wbs_dat_o[31:0] =0
wbs_dat_s[31:08] =0
wbs_sel_i[3:8] =F
wbs_stb_i=6
wbs_we_1i=8)

FFFFFFFEFFFFFFFFFFFTFFFFFFFFIF+|FFFFFFFBFFF= |FFFFFFF3FFEFFFFFFFFFFFFFFFFFFFFE
iiiiiid
Giiiiiid

Figure 11: Adder Projects in Framework

This test was run as both an RTL and GL simulation, and both produced correct results.

Other projects within our framework could not be verified through basic simulation, so these

projects were tested on the FPGA. The results for the senior design seven segment display project

are shown in Figure 12.

41

Figure 12: Seven Segment Display in Framework

These tests verified the interfaces between the projects and the Wishbone bus, LA pins, and 10
pins, as well as project selection and reset, were functioning as expected.

10.4 APPENDIX 4 - TEAM
10.4.1 Team Members

Mitchell Driscoll
Evan Dunn
Baoshan Liang
Katie Wolf

10.4.2 Skill Sets Covered by the Team

Mitchell - Circuit board design, code debugging
Evan - Verilog development

Baoshan - Verilog code debugging

Katie - System design, Verilog development

10.4.3 Project Management Style Adopted by the team
Combination of Waterfall and Agile

10.4.4 Initial Project Management Roles

Mitchell - Component Implementation
Evan - Researcher, Design Testing
Baoshan - Design Testing

Katie - System and Component Design

10.4.5 Team Contract

Team Members:

42

1) Mitchell Driscoll 2) Evan Dunn

3) Boashan Liang 4) Katie Wolf
Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:
o Tuesday 4-5 pm with Dr. Duwe
o Thursday 2-3 pm with just team members
o Asneeded digitally when something comes up.
2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-mail, phone, app, face-to-face):
o Discord and Teams
3. Decision-making policy (e.g., consensus, majority vote):
o Consensus, with potential veto with cause.
4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be
shared/archived):
o Use GitHub and Google Drive to take notes and share files
o Share links and resources through Discord

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:
o All members are present and on time for meetings
o Let others know ahead of time if you will be late or absent
o Exceptions permitted in regard to unexpected delays, sicknesses, etc
2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:
o Meet deadlines as best as you can
o All members contribute to team assignments
o Submissions and contributions should be submitted in a timely manner unless
otherwise excused via aforementioned exceptions.
3. Expected level of communication with other team members:
o Regular communication throughout the week
o Let others know immediately if issues or concerns come up
o Respond to messages within 24 hours
4. Expected level of commitment to team decisions and tasks:
o Commit to decisions decided as a team
o Voice concerns as soon as possible
o Each member should commit at least a significant portion of their time to the
active development of the project.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):
Evan - team organization

o Mitchell - schematic design
o Baoshan - design testing
o Katie - schematic and component design

43

2. Strategies for supporting and guiding the work of all team members:

o Gentle reminders, along with active guidance regarding development and subject
matter. A clear statement of expectations when it comes to weekly and monthly
progress.

o Excessively plan every facet of the project so that there are no surprises and
everyone can fully commit.

3. Strategies for recognizing the contributions of all team members:

o Rigorously document individual and group accomplishments throughout the
Semester.

o Clear documentation and acknowledgment of past accomplishments. Focus on the
project as a whole. with support from others.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.
Evan - Computer Engineering Major, Digital design, “Industry contacts.”
Mitchell - Electrical Engineering major, Schematic and PCB design
Baoshan - Electrical Engineering major, Schematic and layout, DRC and LVS check
o Katie - Computer Engineering major, computer architecture, digital design
2. Strategies for encouraging and supporting contributions and ideas from all team members:
o Asking everyone for ideas
o Looking into all the ideas that are given
o Discuss ideas as necessary to obtain consensus
3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a
team member inform the team that the team environment obstructs their opportunity or
ability to contribute?)

o O O

o Be honest and communicate early on
o Get the entire team’s input on issues
o Consult faculty advisor and/or professor

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
o Meet the client’s expected deliverables given in the project documentation.
o Establish early on team expectations and finish ahead of deadlines to maximize
testing.
o Establish a unified level of knowledge regarding the subject material.
2. Strategies for planning and assigning individual and teamwork:
o Assign tasks based on team members’ expertise and availability
o Make sure all members have around the same amount of responsibility

o Use our suggested communication systems to inform the group when doing solo
work.

3. Strategies for keeping on task:
o Meet regularly and review upcoming tasks and deadlines
o Check in on each other and hold each other accountable
o Request review by a peer or sponsor if any systemic or personal problems arise.

44

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
o Talk to the other team members
o Review the contract and expectations
o Involve higher authority when necessary.
o Mandatory disembowelment.
2. What will your team do if the infractions continue?
o Talk to Professor Shannon and Professor Fila
o Discuss further measures.
o Repeat the process of disembowelment - just for good measure.

a. I participated in formulating the standards, roles, and procedures as stated in this contract.
[understand that I am obligated to abide by these terms and conditions.

c. Tunderstand that if I do not abide by these terms and conditions, I will suffer the consequences
as stated in this contract.

1) Mitchell Driscoll DATE: 1/30/24
2) Evan Dunn DATE: 1/30/24
3) Baoshan Liang DATE: 1/30/24
4) Katie Wolf DATE: 1/30/24

45

