Digital ASIC Fabrication Faculty Panel Presentation

sddec24-12

Mitchell Driscoll, Evan Dunn, Baoshan Liang, Katie Wolf

Client & Faculty Advisor Dr. Henry Duwe

sddec24-12.sd.ece.iastate.edu

Project Overview

Problem

• Undergraduate students rarely design and fabricate custom ASICs

Goal

• Support co-curricular at ISU for students interested in chip fabrication

Purpose

- Chip framework for student projects
- Amortize cost of fabrication

Efabless Pre-Designed Chip Harness

sddec24-12 | 3

Functional Requirements

- 15-20 total projects large and small
- Microcontroller selects which project is active
- One project is active at a time
- Projects interface with Wishbone bus, LA pins, and IO pins
- Include external OpenRAM modules
- Design successfully passes prechecks

Non-Functional Requirements

Technical Requirements

- Use Efabless process
- Design implemented in Verilog
- Test code written in Verilog and C
- Frequency of 20 MHz

User-Based Requirements

- Full documentation and bring-up plan
- Straightforward to use with minimal help or troubleshooting
- System is modular and users can expand upon it

Constraints

Efabless Requirements

- 2920um x 3520um user area
- Caravel file and directory structure
- 128 LA pins
- 38 I/O pins

Additional Considerations

• OpenRAM module placed on top layer

Market Comparison

- Tiny Tapeout
 - Provides too-little space
 - Insufficient testing interface for development process
 - Not suitable for extracurricular requirements
- Increased space, distributed cost
- Specific needs addressed
 - Easily mapped one student/group to one project greater feedback
- Reusable, modular design
 - Redundancy one broken/misfabricated module doesn't shutter project
 - Projects tested in isolation, independently structured

Resource & Cost Estimation

- Program \$9750
 - 4-5 month turnaround compatible with academic year
 - Without framework: 15 projects × \$9750 = \$146,250 estimated sum
- Open-source software no licensing costs
 - More long-term support
 - Can be maintained by co-curricular team
 - Forking and customization of materials

Potential Risks

Risk	Probability
Design doesn't pass precheck	15%
OpenRAM interface doesn't meet timing requirements	10%
User area cannot fit spine and expected projects	10%
Error occurs during fabrication and delivery	5%

Design

Interfaces

- Wishbone Bus
 - Interface between microcontroller and user projects
- Logic Analyzer Probes
 - Signals driven or monitored by microcontroller
- Input/Output Ports
 - Programmable pins to send or receive data externally

Control Registers

sddec24-12 | 13

OpenRAM

- Pre-hardened module 8-bit data
- Use 4 modules to support 32-bit data

Interconnection with User Projects

- Add ports for all 4 modules
 - Straightforward
 - Add 4 sets of OpenRAM ports
- Wishbone interface
 - Add 1 set of Wishbone master ports

Tools & Technology

- **Caravel** Chip harness
- **OpenROAD** Synthesis toolflow
- **GTKWave** Waveform viewer
- KLayout Layout viewer
- FPGA Board Pre-fabrication testing

Unit Testing

- Register Transfer Level (RTL) Simulation
- Hardening
- Gate-Level (GL) Simulation
- Modules
 - N-bit register
 - 5 to 32 decoder
 - 32 to 1 multiplexer
 - Wishbone control module
 - OpenRAM interface
 - User projects
- Test hardening user projects to find constraints

Unit Testing Results

N-bit Register Waveforms

Time	0				10 ns		
ОК							
addr_i[31:0]	00000000	300F0000	X300F0004	X300F0008	X300F0000	X300F0004	X300F0008
<pre>module_we_o[2:0]</pre>	000				001	010	100
we_i							

Wishbone Control Waveforms

Hardening Results

Component	Run #	Changed Settings	# Ports	CLOCK_PERIOD	CLOCK_PORT	CLOCK_NET	FP_SIZING	DIE_AREA	PL_TARGET_DENSITY	Pass? (Y/N)
adder_wrap	9	Added WB master ports	711	25	wb_clk_i	[blank]	absolute	0 0 700 700	0.55	Y
						0605 - Ve				
adder_wrap	10	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 501 501	0.55	N
adder_wrap	11	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 550 550	0.55	N
adder_wrap	12	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 575 575	0.55	N
adder_wrap	13	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 600 600	0.55	Y
adder_wrap	14	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 585 585	0.55	N
adder_wrap	15	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 586 586	0.55	N
adder_wrap	16	DIE_AREA	711	25	wb_clk_i	[blank]	absolute	0 0 587 587	0.55	Y

Die Area Tests

10 mm² / .587 mm² = 29 possible projects

Integration Testing

- Interconnections
 - \circ Wishbone bus
 - Logic analyzer
 - \circ IO pins
 - OpenRAM interface
- Utilize previous senior design projects

Acceptance Testing

- Harden top-level design
 - Place and route
 - Optimal hardening configuration
- Caravel precheck
 - Required for Efabless submission
 - Layout Versus Schematic (LVS)
 - Design Rule Check (DRC)

Bring-Up Testing

- Physical testing on FPGA
- Future testing plan
 - Testing template with OpenRAM interface
 - Bring-up boards

Project Status

Complete	In Progress	Next Steps
Tool Setup	Module Implementation	Framework Integration
Design Decomposition	RTL Simulation	High-Level Testing
Hardening Data	Module Hardening	Framework Hardening

Project Schedule

Task	Status	Jan	Feb	March	April	May	 Aug	Sept	Oct	Nov	Dec
Project Setup	Done										
Setup tools and workspace	Done										
Example project tutorials	Done										
Design Decomposition	Done										
Research components	Done										
Draw schematic	Done										
Create Modules	In Progress										
Implement modules	In Progress										
Test and harden each module	In Progress										
Integrate Modules											
Add modules to project wrapper											
Implement interconnections											
Test Overall Design											
Test interconnections											
Test user projects											
Submit Design to Efabless											
Bring-Up and Physical Testing											
Test on firmware											
Create bring-up plan											

Team Roles		
Wishbone Interface	Top-Level Design	Place and Route
Katie	Mitchell Katie	Evan
Integration Testing	Acceptance Testing	Bring-Up Plan

References

- [1] https://efabless.com/open_shuttle_program
- [2] https://caravel-harness.readthedocs.io/en/latest/
- [3] https://github.com/efabless/caravel_user_project/blob/main/docs/source/index.rst
- [4] https://tinytapeout.com/
- [5] https://en.wikipedia.org/wiki/Wishbone_(computer_bus)
- [6] https://sddec23-06.sd.ece.iastate.edu/

Thank you! Questions?

sddec24-12 | 26